Automating processes which incorporate unstructured data â documents, forms, text, images, video and more.
Intuitive interface enables process owners to build their own automation models; no data scientists required. Automate workflows involving unstructured data to dramatically reduce processing time with unmatched accuracy.
Many firms have reached the limit to what RPA can do for them. They’re now asking: What can Intelligent Process Automation do for me?
Intelligent Process Automation (IPA) empowers businesses to implement unstructured data process automation, including for text, images and more. IPA does so without requiring rule-based decision-making, or huge training data sets, that are out of reach for 95% of enterprises.
Indicoâs approach to IPA builds on the artificial intelligence concept of transfer learning, where a model trained on one task is used for another, related task.
Transfer learning addresses one of the key challenges in any AI-based automation solution: the time required to learn exceptions. A process automation solution used to have to understand thousands of use cases before it could be used in production to automate an actual process. Transfer learning has changed that equation.
Indico has created a base model consisting of more than 500 million labeled data points, enough for the model to understand human language and context. Applying transfer learning allows users to then create custom models for downstream tasks using a fraction of the data normally required â 100 to 1000x less as compared to traditional approaches.
Rather than training the model on hundreds of thousands of examples, or creating rules to account for every variation of the documents at hand, Indicoâs intelligent process automation tools let you start with its base model and train on just 200 or so examples of the process you want to automate. In just an hour or so, youâll have a complete workflow automation model.
Also, because most of the training is already done up front, the unstructured data process automation platform can run on just one or two GPUs, and scale up using low-cost CPU. Overall, you get a highly effective intelligent automation tool that can pay for itself in short order by dramatically reducing both process cycle times and the human resources required to perform the process.
That’s the benefit of Indicoâs intelligent process automation tool; it doesnât require a million-dollar investment to run.
Intelligent Process Automation offers a single solution for document process automation: intake, understanding and digitization: in other words, unstructured document processing, as well as processing of structured and semi-structured documents. This allows for the end-to-end document process automation of contract analysis, customer onboarding, commercial underwriting, financial document analysis, mortgage processing, billing form reviews, insurance claims analysis and much more. With its cognitive intelligence capabilities, IPA can understand the text, images, documents and other unstructured data that are fundamental to so many business processes â and make accurate judgments based on surrounding context.
Unstructured data creates problems for rule-based automation engines, including robotic process automation platforms, and OCR templating approaches, because itâs so difficult to define rules that apply to something you canât predict. And unstructured data is nothing if not unpredictable.
By definition, unstructured data refers to data that is variable in nature. It could be in the form of a contract, Word documents, text (including emails) and images.
IPA also enables companies to analyze unstructured data. Because business intelligence and analytics tools can generally only deal with structured data, the value inherent in unstructured data remains untapped. Indico Data changes that by automating the process of turning unstructured data into a structured format, such as JSON or .csv. Once itâs structured, you can feed the data to analytics engines and business intelligence tools, such as Microsoft Power BI and Googleâs Looker.
Along the same lines, Indico’s IPA can prepare unstructured data for input into data visualization tools such as Tableau, which also requires data to be in a structured format. Effectively, Indico Data makes possible unstructured data analytics and visualization.
This is a sea change for companies that have been relying on rule-based automation engines, including robotic process automation platforms and OCR templating approaches. These tools cannot effectively process unstructured data because itâs simply too difficult to create rules for data that has no predetermined format.
With IPA, you can now automate processes involving unstructured data, unlocking value feeding it to BI and other analytics tools. Literally decades-worth of business intelligence is now newly at your disposal.
This Fortune 50 organization is an innovator and leader in protection planning and retirement and savings solutions worldwide. Its subsidiaries offer life, accident, health insurance, retirement, and savings products through agents, third-party distributors such as banks and brokers, and direct marketing channels. The company serves more than 90 of the top 100 FORTUNE 500Âź companies in the United States.
The company began its automation journey to digitize valuable content accumulated over decades â millions of pages of unstructured content â long-form content, policy contracts, claims submissions, emails, and more. Starting with RPA, they digitized structured data â but quickly hit a roadblock. “While we had captured major efficiencies with our RPA programs, we were seeing a graveyard of use cases involving unstructured data that we couldn’t touch,” the VP of Strategy and Planning told us.
The company began using Indico’s platform, allowing the reading and understanding of unstructured content. The insurance firm appreciated that employees could use the platform to build models with a point-and-click, low-code application interface. As a result, the Center of Excellence team could focus on finding automation opportunities.
The team initially identified 134,000 documents containing valuable information for risk modeling. Based on a training set of 200 samples, the model classified all the attributes needed â in just a few days. The company saved 5,400 hours with the Indico platform and expects to save $100 million over the next few years.
As the VP of Strategy and Planning put it: “Our CoE is in the business of scaling â it’s not enough for us to have a point solution to a single or small number of use casesâŠwe want to continue expanding our automation scope. To that end, we need a solution that covers the broadest number of problems in the organization.”
For the full Indico IPA customer story, click here.
The process through which companies use Intelligent Process Automation to build data models is simple and highly effective. Business subject matter experts label the data points they deem most important to the process theyâre looking to automate. As they apply labels, the model is updated on the fly and will start to show predictions on subsequent datasets. Once youâre comfortable with the predicted results, youâre done building your model.
The beauty of this approach is that the people who understand the business problem and the desired results â those on the business side of the house â are the ones who train the model. With Indico, thereâs no need to try to explain to a data scientist what youâre after and then hope you get the appropriate results. Line-of-business creates its own models easily.
And itâs not a complex process. Everything is in plain English and you can have a fully working model in an hour. Intelligent Process Automation is just that simple.
If that sounds different from other AI process automation solutions youâve encountered, thatâs because it is. While Indicoâs Intelligent Process Automation solution is certainly sophisticated in its use of cognitive technologies, including machine learning and natural language processing, we keep the technology behind the scenes, enabling an army of citizen data scientists to use the technology to solve real business problems.
Natural language processing (NLP), for example, is core to our intelligent process platform. Itâs what enables our generalized model to understand the context around unstructured data, just as a human would. But itâs built into our models and functions behind the scenes; thereâs no need for those who use the platform to even know what NLP is.
The same goes for machine learning (ML). While our engineering team built our IPA platform using cutting edge ML models, they all sit in the background â thereâs no need for users to tweak or otherwise interact with them, or even understand how they work. Instead, you can just think about how to apply IPA to take repetition and complexity out of your processes and deliver real business benefits.
IPA can be used to automate the classification and annotation of a new claim, and route it to the appropriate SME for evaluation and processing. The result is faster turnaround time and improved accuracy in claims processing, which drives improved customer satisfaction and organizational efficiency.
One of the thorniest parts of the commercial insurance underwriting process is getting an accurate picture of the applicantâs loss history, generally gleaned from loss run reports . But it can be a cumbersome process to collect all the reports and accurately extract data from them for input into the underwriting system â making it an excellent candidate for intelligent process automation in insurance .
Few vertical industries are as document-intensive as healthcare, whether on the provider or insurance side. That makes the healthcare industry ripe for automated insurance claims processing and other chores, for both providers and insurers alike. Intelligent process automation can help healthcare organizations address unstructured documents, driving cost savings and improving the patient experience.
Getting new clients is a good thing, but for insurance companies it also creates a challenge: processing all the required documents. To date, itâs been a largely manual process that for large insurers can easily involve 15 million documents per year, making it a ripe target for intelligent document processing technology
Major commercial underwriting processes often involve thousands of pages of documentation. Insurance workflow automation can dramatically improve the process by creating underwriting criteria that IPA solutions automatically recognize, enabling them to quickly come up with a âscoreâ for each potential customer. The result is a major reduction in response times to customers as well as improved accuracy, satisfaction, organizational efficiency and profit.
IPA can be used to automatically classify and extract relevant unstructured data from customer onboarding documents into the bankâs digital management system. This results in improved accuracy and speed for onboarding a new customer, driving improved customer satisfaction and faster time to revenue for the bank.
In 2017 a UK-based regulatory group announced the LIBOR interest rate benchmark would be phased. As a result, banks and financial institutions around the globe are scrambling to determine their exposure â a task thatâs tailor-made for intelligent process automation solutions.
Banks with detailed processes for appraising and approving mortgages, including data extraction and image recognition, can use intelligent automation tools to process the extraction of relevant unstructured data from onboarding documents, as well as to analyze images. Intelligent automation tools can be used to bring workflow automation to the mortgage approval process, allowing it to become far more efficient and consistent
A lockbox is a service that financial institutions including commercial banks offer. Similar to a post office box to which companies have customers send correspondence, a lockbox is a service offered by commercial banks whereby companies can have their customers send payments to the bank. For a fee, the bank takes care of matching each payment to an invoice, helping to streamline the accounts receivable process for its client company.
When it comes to automating document processing, titles and deeds in particular present a vexing challenge. The reason is simple: these documents vary enormously depending on where they come from. Naturally, each county has its own forms for titles and deeds, and they are not all alike â far from it. Businesses that need to process lots of these kinds of documents have historically had to manually extract data from these forms and enter it into spreadsheets and other financial systems. Clearly these firms could benefit from process automation.
Investment banking firms can use IPA to analyze the financial health of companies before deciding whether to invest in them. Instead of poring over thousands of financial statements and manually extracting relevant data from each of them, IPA enables financial firms to automate the process, pulling out relevant data and normalizing it for insertion into data processing tools. The result is a dramatic improvement in speed and efficiency.
Processing invoices is an issue that just about any large company struggles with â and one thatâs ripe for automation. But itâs a classic example of an application where process automation software that relies on templates fails to deliver consistent results, for reasons that are easy to understand. When you have invoices from many different companies, youâre essentially dealing with unstructured data, which rule-based tools and template-based approaches to automation arenât well-suited to handle. Intelligent process automation (IPA) tools, on the other hand, can handle unstructured data. IPA uses OCR, machine learning (ML), and natural language processing (NLP) to enable it to understand the context in a given document, enabling it to identify the relevant information you want to extract, without having to create a template for every variation of the invoices in question.
In the corporate Inbox use case, an intelligent process automation tool would be able to âreadâ an incoming email, discern what the topic is, then route it to an appropriate subject matter expert. For relatively simple matters, such as a change of address request, the IPA tool could extract the pertinent information and input it into an appropriate downstream system. An intelligent process tool can also extract and automate the handling of any attachments from an email, such as PDFs and Word documents. Here again the tool is smart enough to âreadâ the attachments and extract relevant data for input it into another downstream tool for processing or future reference, such as a customer relationship management (CRM) system.
Extract relevant data from insurance documents and feed it to an analytics engine to identify any areas where you may be running afoul of regulatory requirements. Indico Data can also help index data to simplify and speed responses to regulatory bodies.
Intelligent Process Automation can streamline processes involving unstructured documents from receipts, purchase and sale agreements, images, and contractor estimates. Reduce processing time by up to 85%.
Extracting data from rent rolls and converting to a structured format enables you to feed it to an analytics tool to gain insights into cash flow, turnover rates, vacancies, and opportunities as well as speed due diligence checks.
ISDA Master Agreements, which spell out the terms between two parties regarding over-the-counter (OTC) derivatives transactions, are notoriously complex and lengthy. The latest version, from 2002, is 28 pages long. Yet, itâs common that multiple subject matter experts (SMEs) must examine the documents and confirm terms are correct before executing a trade. Indico Data automates the process, dramatically reducing ISDA Master Agreement processing times.
Intelligent Process Automation can transform the verification and processing of client documents and monitoring of negative information. Indico Data machine learning models can help identify the warning signs of a money laundering risk by comparing to baseline data. You can also extract key data from various documents and feed them to an analytics engine that can identify suspicious activity.
Intelligent process automation builds upon existing processing automation technologies that also sought to streamline business processes, namely business process management (BPM), business process automation and robotic process automation (RPA).
BPM and business process automation are focused on improving an existing business process. That often involves automating some steps in the process, although thatâs not necessarily a requirement. Itâs more about optimizing a process to make it more effective and efficient, often by using methodologies such as Six Sigma and Lean.
As its name implies, RPA does involve process automation and works well with repetitive, deterministic business processes involving structured data â where there is no judgment involved. Tell it exactly what you need it to do and RPA can do it better, faster and cheaper than a human.
But if a task comes along that deviates from the pre-defined task, RPA will not be able to automate it. It cannot make judgments about information or learn and improve with experience. In that sense, RPA is different from machine learning and IPA.
For the same reason, RPA is ineffective with workflows involving unstructured data â those that require some level of cognitive ability. And this type of data makes up over 80% of the data in most enterprises today.
Because of IPAâs cognitive ability, it is very well-suited to work with business processes involving unstructured data â all the text, documents, and images that drive many enterprise business processes today.
What is intelligent process automation?
IPA does not replace or compete with RPA. It complements it, handling the unstructured data, outputting it as structured data which can be re-inserted back into a business process that RPA can then address, leading to true digital transformation. IPA can pick up where RPA hits a roadblock in such diverse use cases as customer communications, report aggregation and insurance claims.
There are some rather impressive numbers in terms of return-on-investment for intelligent automation projects.
Suppose a given process involves 10 employees who each make $100,000/year, or $1 million total. The team performs 500,000 tasks per year dedicated to this process, so the cost per task is $2. Letâs say an IPA solution can automate 75% of those tasks, which is not at all unrealistic. The cost per task falls to just 50 cents and your annual gross savings is $750,000. Subtract the cost of the automation solution and you can calculate your ROI. (Hint: it will be huge.)
At the same time, youâre gaining soft benefits including increased employee satisfaction and productivity â because employees wonât be doing the same monotonous tasks every day, instead taking on more rewarding work. In the example above, you now have $750,000-worth of employee time to dedicate to other areas, dramatically increasing the capacity of the organization.
Whatâs more, the newly automated tasks will be performed with increased accuracy and consistency, which likewise saves money and helps ensure compliance with industry regulations.
Donât take our word for it. We recently sat down with MetLifeâs VP of Intelligent Automation to discuss the company’s automation journey from solving simplistic tasks with RPA to deploying Intelligent Process Automation to automate unstructured document-based workflows. MetLife has found $100M in value through hours saved that they can unlock in the next 5 years for their businesses by using Intelligent Process Automation on unstructured data. You can watch the full interview here.
85% reduction in process cycle times
Drive customer satisfaction and quicker time to market for new initiatives
4x increase in process capacity
Scale critical processes without increasing expenses, for more cost-efficient back office functions
80% reduction in human resources
Free up critical resources to work on higher value-add projects rather than repetitive low-value tasks
Ease of use
No data science expertise required
1000x less training data required
As compared to traditional artificial intelligence solutions
Built for unstructured data
Works with text, documents and images to automate almost any business process